
Integration: Hugging Face
Use Models on Hugging Face with Haystack
You can use models on Hugging Face in your Haystack pipelines with the PromptNode, EmbeddingRetriever, Ranker, Reader and more!
Installation
pip install farm-haystack
Usage
You can use models on Hugging Face in various ways:
Embedding Models
To use embedding models on Hugging Face, initialize an EmbeddingRetriever
with the model name. You can then use this EmbeddingRetriever
in an indexing pipeline to create semantic embeddings for documents and index them to a document store.
Below is the example indexing pipeline with PreProcessor
, InMemoryDocumentStore
and EmbeddingRetriever
:
from haystack.nodes import EmbeddingRetriever
from haystack.document_stores import InMemoryDocumentStore
from haystack.pipelines import Pipeline
from haystack.schema import Document
document_store = InMemoryDocumentStore(embedding_dim=384)
preprocessor = PreProcessor()
retriever = EmbeddingRetriever(
embedding_model="sentence-transformers/all-MiniLM-L6-v2", document_store=document_store
)
indexing_pipeline = Pipeline()
indexing_pipeline.add_node(component=preprocessor, name="Preprocessor", inputs=["File"])
indexing_pipeline.add_node(component=retriever, name="Retriever", inputs=["Preprocessor"])
indexing_pipeline.add_node(component=document_store, name="document_store", inputs=["Retriever"])
indexing_pipeline.run(documents=[Document("This is my document")])
Generative Models (LLMs)
To use text generation models on Hugging Face, initialize a PromptNode
with the model name and the prompt template. You can then use this PromptNode
to generate questions from the given context.
Below is the example of question generation pipeline using RAG with EmbeddingRetriever
and PromptNode
:
from haystack import Pipeline
from haystack.nodes import BM25Retriever, PromptNode
retriever = EmbeddingRetriever(
embedding_model="sentence-transformers/all-MiniLM-L6-v2", document_store=document_store
)
prompt_node = PromptNode(model_name_or_path = "mistralai/Mistral-7B-Instruct-v0.1",
api_key = "HF_API_KEY",
default_prompt_template = "deepset/question-generation")
query_pipeline = Pipeline()
query_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
query_pipeline.run(query = "Berlin")
If you would like to use the Inference API, you need pass your Hugging Face token to PromptNode.
Ranker Models
To use cross encoder models on Hugging Face, initialize a SentenceTransformersRanker
with the model name. You can then use this SentenceTransformersRanker
to sort documents based on their relevancy to the query.
Below is the example of document retrieval pipeline with BM25Retriever
and SentenceTransformersRanker
:
from haystack.nodes import SentenceTransformersRanker, BM25Retriever
from haystack.pipelines import Pipeline
retriever = BM25Retriever(document_store=document_store)
ranker = SentenceTransformersRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2")
document_retrieval_pipeline = Pipeline()
document_retrieval_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
document_retrieval_pipeline.add_node(component=ranker, name="Ranker", inputs=["Retriever"])
document_retrieval_pipeline.run("YOUR_QUERY")
Reader Models
To use question answering models on Hugging Face, initialize a FarmReader
with the model name. You can then use this FarmReader
to extract answers from the relevant context.
Below is the example of extractive question answering pipeline with BM25Retriever
and FARMReader
:
from haystack.nodes import BM25Retriever, FARMReader
from haystack.pipelines import Pipeline
retriever = BM25Retriever(document_store=document_store)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
querying_pipeline = Pipeline()
querying_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
querying_pipeline.add_node(component=reader, name="Reader", inputs=["Retriever"])
querying_pipeline.run("YOUR_QUERY")